Data Acquisition System Comparison
for
ESS
October 2012
Mark Konnecke
Paul Scherrer Institut
Switzerland

Introduction

In this document various current data acquisition systems used at neutron and
synchrotron facilities are compared against each other. As this survey is aimed at
designing a data acquisition system for ESS, special attention will be given to aspects
of neutron data acquisition.

The term data acquisition (DAQ) system is ambiguous. For the purpose of this
document it means the complete software system: neutron or photon detection and
capture, slow controls such as motors, sample environment and such and the
coordination of all these components. It also includes the user interface used for
running an instrument.

For each system the following topics will be covered:

An overview of the system

Hardware and software requirements for the system

How the system accesses hardware

Neutron data acquisition implementation of the system when appropriate
Implementation of higher level functionality and sequencers when appropriate
User interfaces

Data handling

Features of the system

Management issues like

o Support

o Human resources requirements of the system

Another clarification: in this document the word instrument is used. To the author an
instrument is a complete beam line from source to sample and detectors.

There is also a short glossary of computing terms at the end of the document.

TANGO

TANGO is a distributed data acquisition and control system which has been
developed in a collaboration between ESRF and seven other partners including
SOLEIL, ELETTRA, ALBA, FRMII and Maxlab. Some institutes like ILL are users
of Tango. Functionality in Tango is implemented in TANGO device servers.
Communication between TANGO device servers and clients happens via CORBA
and ZeroMQ. What is used on top of TANGO in order to implement higher level
functionality varies:

e SPEC is still used at the ESRF beam lines as a sequencer

e Many beam lines use scripts in a variety of scripting languages to run their
instruments

e ALBA has developed a sequencer called Sardana on top of TANGO which
starts being used at other facilities too.

TANGO System Requirements

TANGO runs on all popular operating systems: Linux, Windows and Macintosh.
However, most usage is on Linux. Besides the OS, TANGO requires the following
software:

e OmniORB
e Jacob

e gccd+

e Java

e Python

All these requirements are free software.

In terms of network protocols TANGO uses CORBA and ZeroMQ for events (since
Tango V8).

TANGO Hardware Access

Hardware access (and higher level functionality) is implemented in TANGO device
servers. A TANGO device server is a full CORBA server. Each device server can
hold multiple devices. And any given device can implement a number of commands,
attributes and properties. There exist device abstract classes which describe which
commands, methods and properties to expect for devices of that class. For example
the device abstract class for motors would detail which properties and functionality to
expect for a motor. The abstract classes are not pure abstract - they can implement
common behavior if needed.

TANGO facilitates the development of new device servers through several
techniques. On the programming language level TANGO provides interfaces:

e for configuring the properties and functions available on the device
e for the implementation of the properties and functions of the device
e a state machine for every device class means every device has state and state
transitions
Programming device servers thus comes down to inheriting from base classes,
extending them and implementing a state machine

Moreover there is a code generator called POGO. POGO takes as input a text file
which contains a description of the properties and functions of a device in a domain
specific language. POGO then creates a skeleton TANGO device server for you. A
programmer just has to fill in the code.

All TANGO software is developed against the TANGO library. The TANGO library
provides wrappers and implementations for common system services like network
protocol, threads, polling, logging, configuration, bus access etc. The advantage of
this approach is that whenever any of the underlying services changes, then only the
library needs to be modified. Device servers stay unaffected and just link against the
new library. This helps ensuring long term maintainability of the software.

TANGO device servers can be implemented in any the programming languages:

o C++
e Java
e Python

C++ is however the main development language. Due to the shared network protocol,
device servers implemented in any of these programming languages can be freely
intermixed.

Clients can interact with TANGO device servers RPC style through CORBA. Clients
can also subscribe to TANGO device servers in order to receive automatic
notifications about device state changes via ZeroMQ.

There are plans to replace CORBA through ZeroMQ completely in the future.

Neutron Data Acquisition

TANGO is mainly used at synchrotron radiation facilities. It thus has efficient support
for CCD cameras but so far not for neutron data acquisition. But there is nothing in
TANGO which prevents its use for neutron DAQ. Tango is used at two neutron
facilities - FRMII and ILL. In contrast to EPICS, TANGO has no problems with
transferring arrays. Large arrays are transferred at network speed.

Implementation of Higher Level Functionality
TANGO offers several choices for implementing higher level functionality:

e Higher level functionality can be implemented in specialized TANGO device
servers. The TANGO device server model is flexible enough to implement
almost anything.

e Another option is to implement higher level functionality in special client
programs. Such programs can be implemented in any language with a CORBA
interface. There also exist TANGO bindings for many programming and
scripting languages(Python, Matlab, IgorPro, Labview). Bindings can be
written for any language which can call C, C++, Java or Python code

e Tango devices can be organized hierarchically to hide and better manage
complexity in systems

e One of the TANGO aware sequencers can be used. Currently these are SPEC
and Sardana.

SPEC is a simple scripting language containing primitives for accessing DAQ

hardware and more importantly a macro system which allows to define functionality
as SPEC macros. SPEC is used at many synchrotron facilities. However, SPEC is
very old, commercial and maintained by one person who has already reached
retirement age. Thus I would not recommend SPEC for any new project like the ESS.

Sardana adds the following elements to TANGO:
A Device Pool

A central container which holds all devices and pseudo devices belonging to an
instrument. The device pool also contains interfaces to common hardware. This
makes it possible to directly access devices by writing controller classes,
thereby bypassing the TANGOs device server model. The device pool server
can be queried to locate devices of specified types or names.

A Macro Server

A server which allows to execute macros written in python against the device
pool. Macros can be dynamically loaded and reloaded.
A CLI client

A command line client with a SPEC look alike syntax which interacts with the
macro server to execute operations against the DAQ system
A GUI

A graphical user interface which allows to view the device pool and macro
server. Pythons introspection facilities are used to document available macros to
the user. It is also possible to match Macros with appropriate Ul classes in order
to arrive at a tailor made UI component. The whole GUI can be configured to a
wide range of applications.

Sardana also adds additional functionality to TANGO. The most important are:

A simulation mode

NeXus data file writing

Extension points to add instrument specific functionality

A GUI toolkit for creating instrument specific user interfaces

User Interfaces

Besides Sardana, there is no single, general purpose user interface which sits on top of
TANGO. The ATK toolkit written in Java/Swing is used for most general purpose
tools. Each institute has different competences and therefore has preferred to use
graphical tool kits of their choice. The most common ones are Java/Swing and C++ or
Python QT. There are also many specialized graphical user interfaces. The TANGO
distribution also contains several graphical tools for managing a TANGO system. But
these tools are usually not something an external user is meant to interact with.

Scripting is implemented through TANGO adapters for a variety of scripting
languages.

Control System Features
Configuration

TANGO Device servers configure themselves from a central database.
Addressing

Parameters in TANGO device servers are accessed via hierarchical path strings
like in a unix file system
Simulation mode

TANGQO by itself does not support a simulation mode. But Sardana does.
Logging

There are configurable logging options. Logs can be switched on and off and
can happen to both local files and to a central service on the network.
Debugging

There is no special debugging support in TANGO.
Error propagation

Happens via CORBA exceptions
Remote access

Is done via remote desktop solutions like NX. There is also the option to tunnel
TANGO CORBA calls via the WWW or JBus. An HTTP to Tango bridge is
under development.

Integration of sample environment and user hardware

Either through a TANGO device server or by scripting from client programs by

direct bus access. There is also a standard solution for digital and analog 1/O

with user hardware. Tango device servers can be embedded into device

hardware (running embedded Linux for example) and be configured from a file.
Security

Some security by restricting access to certain networks and users. Protects
against mistakes, not serious hacking.
State Change Propagation

Every device has state. Clients are informed of changes by subscribing to
STATE_CHANGE events
Unit Testing

50 % coverage and increasing for TANGO library code.
Parallel Processing

TANGO device servers work in parallel, thus parallel processing is supported.
Data protection happens via mutexes at device server level. Clients can either
poll for state changes or subscribe to events. Every client connection has its own
thread.

Management Issues

This is an estimate of the learning curves and support personnel required to run
TANGO.

A ctivity Time required
Teaching a user 2-3h

Teach an instrument scientist 1 months
Teach device development 3 days

Induce new IT staff 6 months
Develop drivers days to weeks

ESRF currently employs 17 staff plus community support to run 42 beam lines. ESRF
beam lines are more complex then neutron ones: a ESRF beam line can include up to
100 motors, 20 monitors, 2 1D detectors and 5 2D detectors.

TANGO is used at several synchrotron facilities. Thus there is a good level of support
and an ample stock of existing device drivers and modules which can be reused.

NOMAD

NOMAD is a data acquisition system used and developed at ILL. It is a client server
data acquisition system consisting of a central server and a matching graphical user
interface. The Ul and the server communicate with each other through CORBA. The
NOMAD server is written in C++. The graphical user interface is written in Java
using the SWT toolkit but not eclipse-RCP.

System Requirements

NOMAD runs on Linux 32 bit. A port to Windows has been done. As CORBA object
request broker, OmniORB is used.

Hardware Access

All hardware access happens through the NOMAD server. HW access in NOMAD is
organized in layers:

1. At the bottom is a bus layer which abstracts the communication through a
variety of buses like VME, TCP/IP, RS-232 etc.
2. On top of the bus layer is the driver layer.
3. On top of the driver layer sits an abstraction layer which allows to configure
the format of the commands to send and the replies to parse in a XML file.
However, when a driver cannot be realized through configuration, a new driver needs
to be written in C++ and linked into the NOMAD server. In this process the developer
is supported by the NOMAD server framework which provides not only for bus
access but also for threading and other primitives.

Neutron Data Acquisition

The ILL uses PowerPC VME onboard computers for neutron data acquisition. The
onboard computer receives neutron events through mezzanine I/O modules. The
PowerPC computer does not run an operating system but rather a selectable
histogramming process directly on the hardware. The normal mode of operation is
histogramming. After the end of data acquisition the resulting histogrammed data is
transferred via an VME interface card to the data acquisition computer at
40MB/second. With more advanced hardware this can increase to 3GB/sec. This
neutron DAQ system is capable to process neutrons at SMHZ.

There is also an event DAQ mode. In this mode two buffers exist in memory which
get filled alternately. Finished buffers are read by the DAQ computer. This mode of
operation is capable of 1TB/day.

Implementation of Higher Level Functionality

All higher level functionality is implemented in the NOMAD server. Scans and
scientific controllers are embedded. Scientific controllers translate physical values,
like wavelength, into movements of devices. C++ coding, compiling and linking is

required to add functionality to NOMAD. There is the intention to simplify this a little
by dynamic loading.

A central data structure in the NOMAD server is the command queue. More complex
user commands are broken down into simpler commands which are queued in the
command queue. A scheduler then takes care of executing the command queue. A
separate scheduler and queue exist in order to support a simulation mode.

NOMAD supports different data file formats for different user groups. Increasingly
NeXaus files are written through a template system.

User Interfaces

The graphical user interface to NOMAD is the NOMAD GUI. The key view of the
NOMAD GUI is a tree view of the instrument. This tree view is filtered according to
the role of the user: user, instrument scientist and support staff. Different user roles
see different levels of detail of the instrument. Through this tree view the instrument
can be run or batch files can be created graphically. The NOMAD GUI supports loop
constructs within the graphical batch editor. A separate window is used to display the
data currently being collected in the instrument. The NOMAD GUI is implemented in
Java using the SWT UI toolkit. GUI components are defined in XML files; thus it is
possible to change the look and function of UI components without recompilation.

The NOMAD GUI has been ported to Android.

The NOMAD GUI communicates with the NOMAD server via CORBA. Updates of
the instrument status are propagated to the NOMAD GUI through CORBA
notifications.

A scripting interpreter is included in the NOMAD server. NOMAD's scripting
language is NOMAD specific. A parser was added to understand the syntax of the
MAD software, the predecessor of NOMAD. All new structures such as loops and
control constructs are only available in NOMAD's own scripting language.

Control System Features
Configuration

Via XML files managed by the NOMAD server. The configuration files
represent the total instrument with all hardware and sample environment
options. Devices can be disabled/enabled according to the needs and use cases
of the instrument. The configuration is periodically saved in order to allow for
bump less restarts.

Addressing

Via the NOMAD tree view and by name
Simulation mode

Implemented via a separate scheduler in the NOMAD server. Several different
simulation modes exist.

Logging

Done centrally by the NOMAD server in either text or XML files. Several logs
exist: a user log and a debugging log.
Debugging

There is a debugging log. It is also possible to have a live view into the
NOMAD server in order to inspect processes and variables. There is automatic
crash reporting.

Error propagation

Through CORBA event notifications.
Remote access

In principle possible because of the client server architecture. In practice remote
access 1s not being done for security reasons. Instrument scientists can connect
via VNC. This is fast enough.

Integration of sample environment and user hardware

Known hardware is configured into the instrument. For unknown hardware
there are communication primitives available from the scripting language to
send commands along the known buses.

Security

The NOMAD server has a password system in order to differentiate three
different users: user, instrument scientist and superuser.
State Change Propagation

Internally through links within the NOMAD server or through CORBA
notifications.
Parallel Processing

Parallel processing happens through threads in the NOMAD server. A NOMAD
supplied base class ensures safe thread execution within the NOMAD
environment. A XML file is used to define what can be run in parallel.
Otherwise there exist per object locks. Operations can be collected into a block.
When this block is active then all participating objects are locked. Thus the
block serves as a single synchronization point. For all hardware parameters
there is a target, value division which avoids read/writes at the same time.
Stopping, pausing etc. is implemented via state variables.

Management Issues

A ctivity Time required
Teaching a user 0.5h

Teach an instrument scientist 0.5 day

Teach device development 1 week
Induce new IT staff 1-2 months
Develop drivers 0.5 day

ILL runs 40 instruments with 6 people for software support and development. Besides
the neutron instruments at ILL, NOMAD is also used on two beam lines at CSNSM,
the Centre de Spectrometrie Nucleaire et de Spectrometrie de Masses, Universite
d'Orsay, Paris.

EPICS

Overview

EPICS is a control system architecture which is very popular for use with
accelerators. Increasingly it is being used for slow controls at instruments too. EPICS
is a large collaboration including: APS, SLAC, SLS, DESY, BESSY, SNS, Fermilab,

the australian synchrotron and more.

EPICS scales very well. Setups with several hundred IOCs (servers) are common.
Many clients can connect to each IOC without any performance loss.

EPICS has something to offer for all three layers of data acquisition:

Layer 1: Clients

e Thin clients are provided:
e Drag&Drop display builder (medm, edm, ...)
e Value vs time curves (StripTool)
e Alarm handler
e Archiver

o C/C++

e Java

e Tcl/Tk

e Python

e IDL

e Matlab

e LabVIEW

e many other languages

e Thick clients can be implemented with these APIs but are usually not
recommended.

Layer 2: A Network protocol: Channel Access

Provides read and write access as well as event subscription (callback whenever a
value has changed significantly)

Layer 3: Servers

EPICS servers are called IOC, for I/O controller. One central concept of EPICS and of
course an EPICS-IOC is the EPICS database. An EPICS database consists of different
types of records. A IOC manages a configurable set of records. Each records holds a
set of process variables, PV. The server component of the IOC sets PV's in the record
via the channel access protocol. A configurable per record scanner process or thread
then makes the changes to the record actually happen.

System Requirements

IOCs run on vxWorks and RTEMS real-time operating systems as well as on Linux
(embedded Linux too, but maybe not CLinux), MacOS, other UNIX-like systems and
Windows (at least XP and 7, but not CE). Real-time scheduling is used if available by
the OS. IOCs are written in C/C++.

There are EPICS installations which do not use commercial software. On the other
hand ~30% of all drivers still require vxWorks.

Any Processor architecture that is currently supported by one of these operating
systems should work with EPICS, either out of the box or after minor configuration
work. Both, little endian (Intel) and big endian (Motorola) processors are supported in
32 bit and 64 bit versions.

Clients run on the same types of operating systems. Many GUIs still use the Motif
graphics library, but a move to QT is visible. Also Java clients become more and
more popular. A client toolbox based on Eclipse (Control System Studio, CSS) is
under active development.

Generally, support for Linux and other Unix-like operating systems seems better than
for Windows.

The network protocol is based on [Pv4 TCP and UDP broadcasts.

Hardware Access

All hardware access happens via IOC's. Drivers have a defined interface to records: A
function table with init, read/write, report, and other functions. This table is registered
with a string name by which it is found by a record that wants to use it. The record
provides a configuration string that is used by the driver to address the hardware.
Drivers are written in C or C++.

Drivers read or write single values, arrays or strings. For complex instruments, a
driver often has to handle many values (connected with many records) and requires
knowledge of the internal of a device. This is usually implemented with instances of a
driver that handle one device each. Therefore driver code needs to be written with re-
entrancy and multi-threading in mind.

Typically a driver is divided into two layers: an lower layer that handles hardware
access and an upper layer that deals with records.

There is a framework for drivers which provides several features that are commonly
used by drivers, such as work threads, access sequencer, lock mechanism, etc. This
framework also abstracts hardware in a way that makes record configuration more
generic and uniform across different hardware implementations. Hardware is
abstracted as either "registers" (of several data types) or "byte streams" (e.g. GPIB,
Serial, telnet like tcp, ...) or a combination ob both. This makes it possible to use a
common upper layer for a wide range of devices. This framework is more and more
used by new drivers. But there is still a big set of old drivers that are not coded to the
common driver framework.

For simpler devices which follow a command response protocol there exists a
streaming infrastructure which allows to configure the formatting and parsing of the

commands and responses. With this tool many drivers can be developed through
configuration without writing C code.

EPICS does not have a device model. It models individual values. Each value has a
name by which it is addressed and which must be unique on the network. EPICS
values can have attributes which allow to define units, valid ranges and most
importantly error conditions. All EPICS values have a time stamp.

Another thing to keep in mind is that the EPICS IOC has a relatively small output
buffer for clients. In order to limit the data rate to clients the EPICS IOC can choose
to overwrite values in the output buffer by newer ones. Thus a client may not get all
intermediate values of a parameter. This is very OK for a control system where you
are always interested in the latest and best parameter. But may lead to problems in a
DAQ system.

There are also EPICS records which implement functionality such as physical values
mapping like wavelength and a flexible scan record.

Neutron Data Acquisition

EPICS does not have special facilities for neutron data acquisition except for a 1D
histogramming record. EPICS only supports 1D arrays of a fairly static size. Multi
dimensional arrays and actual array lengths must be handled by convention.

Implementation of Higher Level Functionality

The recommended way to develop applications in EPICS is through EPICS real time
database configuration. EPICS does not only provide database records for hardware
but also for control flow, logic and calculations. Further high level records implement
things such as scans, monochromators or other high level functionality. There exists a
popular calculation record which essentially allows to call to a user defined C-
function.

Database records can be connected via links. Links allow events from one record to
propagate to other records, possibly in different IOC's. Linking thus allows to create a
data flow style network of records.

For problems too complex to be solved with interconnected records, a finite state
machine engine is provided that runs on the IOC. It is programmed in a C-like
language. It reacts on changes of records (typically on the same IOC) and writes to
other records.

Addition or deletion of records requires a restart of the IOC, as well as changing the
connection of 1/0 records to hardware. However, re-configuration of existing record
can be done during operation. This is the usual way to set up the data acquisition for a
specific measurement. Since these configurations are values like any other
parameters, they can be stored to files and restored later.

Since inter-connection of records via links works (almost) transparently over the
network (except for timing issues), it is often possible to separate the control flow
logic from the hardware access. This makes it possible to reprogram the logic without
losing control over the hardware during reboot.

With all these features the EPICS real-time database can be thought of as a
programming system in its own right, much like FPGA or PLC programming. It
should be clear by now that the EPICS database is more like a set of distributed
records and has nothing to do with a database in the traditional sense which supports
tables, SQL and much more.

Client side logic is possible but frowned upon. For prototyping it is a quick way to
program something in the preferred (script) programming language. However, this
creates a dependency of the instrument on the client program. It must be assured that
the client program runs all the time and runs only once. Thus, it is preferred to put the
logic into the IOC.

Summarizing this section: the EPICS approach is to configure and join multiple
components (EPICS database records) together rather then to write code. Writing
code is an error prone activity, thus this approach has appeal.

User Interfaces

On top of the EPICS database no standard system exists. Most instruments control
their experiments through scripts written in one of the supported scripting languages.

There exist configurable tool kits for developing tailor made graphical user interfaces,
most notably MDM and control system studio (CSS). These tool kits are designed to
fulfill the needs of accelerator operators. Accelerator operators are usually well
trained staff who essentially do the same operations all over at a fairly static machine.
For the more dynamic environment at instruments, where hardware and procedures
change rapidly, these tool kits are of limited use.

EPICS can be scripted in many scripting languages. For most scripting languages a
channel access binding exists.

Control System Features
Configuration

Via text files distributed across the IOC computers. Use of version control for
these files is recommended. Configuration files for clients usually live on a
shared network file system. Save options at the IOC cater for value storage to
allow bump-less restarts.

Addressing

Each parameter MUST have a unique name. The naming must be defined by
convention.
Simulation mode

Can not easily be implemented. A duplicate complete network of IOCs with
simulation hardware has to be set up. And kept in sync with the real instrument.
Logging

A variety of configurable logging options exists. From logging to local files at
various levels of detail to logging to a central logging server. There is an
archiver tool which can log the values of a selected set of parameters over time.

Debugging

No special debugger exists. On the hardware level debug messages can be
switched on. On the IOC real-time database level, semantic errors based on e.g.
spelling errors can be found relatively easily with the help of built-in
diagnostics. Logic errors are much more difficult to find, because everything
seems to work fine for the computer, it is simply doing the wrong things in the
opinion of the user. Since every value, including intermediate results, in the
system is readable and can be monitored, functionality of the real-time database
can be checked against ones expectations. Some problems can be diagnosed
with the built in alarm system.
Error propagation

EPICS forwards alarm states together with values across links. But in the end
the client program has to check if an alarm condition is present on a parameter.
Remote access

If there is access to the network on which the EPICS real time database is
implemented then everything can be done.
Integration of sample environment and user hardware

This is easiest if a EPICS driver exists. Or by feeding into well known hardware
I/O interfaces.
Security

Read/write protection on a per user/host level can be configured. Though in
practice security is often controlled through network access rules.
State Change Propagation

Either via record links or via notification through the CA protocol.
Unit Testing

Not many unit tests exist.
Parallel Processing

EPICS is highly parallel. Data integrity is ensured at the IOC level.

Management Issues

A ctivity Time required
Teaching a user 0.5h

Teach an instrument scientist 1 day basics
Teach device development 6-12 months
Induce new IT staff 3-6 months
Develop drivers days to months

Becoming a real EPICS expert can take years. EPICS is a big and old collaboration.
Thus a lot of solutions exits for many problems. The real strength of EPICS is its

hardware support: drivers exist for many hardware components.

SLS has 8 staff for 20 SLS beam lines, supported by a separate system administrators
group and 2-3 people in another group writing drivers. This level of staffing is
inadequate and causes frustrations with scientists.

EPICS-4

A new version of EPICS, EPICS-4, is under development. EPICS-4 is designed to be
interoperable with the current version of EPICS, EPICS-3. EPICS-4 brings the
following new features to EPICS:

Complex data types. Whereas EPICS-3 had no device model to group
parameters together, this will be possible with EPICS-4.

Some limitations regarding data types are lifted.

Much improved support for arrays. Where EPICS-3 only supported static
arrays, EPICS-4 will support dynamically sized arrays. EPICS-4 will also
allow to send differences only when only a small part of an arrays changes.

In order to support the new feature there is a new network protocol, PVAS.
Channel access will continue to be included.

Data rate limitations will be per client rather then per IOC.

EPICS-4 aspires to add a middle layer on top of EPICS-3, a service oriented
architecture (SOA). This will allow a more RPC style interaction with the
control system. The programming model is optimized for efficient distributed
synchronous or asynchronous processes communicating by essential a shared-
memory system based on data introspection.

The status of EPICS-4 as of 10/2012 is as such:

The SOA and structured data components are in beta and are being tested.
This is implemented on top of existing EPICS-3 IOC's.

Full replacement for EPICS-3 style IOC services will take some more years to
come along.

Thus EPICS-4 is not mature yet (and will not be for some time) but is an interesting
development to be watched.

Data Acquisition at SNS

At the time of this report, 2012, DAQ at SNS is in transition. Both the neutron data
acquisition software and the system used for slow control in the initial implementation
of SNS instruments is being replaced. In this section we will focus mainly on what
has been learned concerning high data rate event mode data acquisition at SNS.

Enough of the old control system will be described to provide a background for the
decision to redo the system. And for the lessons learned from this system.

The new slow control system will be based on EPICS. Currently the ideas are being
tested on a HIFAR imaging beam line. This system is not ready yet. Thus the current
state as of 7/2012 will be described.

Neutron Data Acquisition

SNS uses He3 tube detectors and scintillator detectors. In order to interface these
detectors a modular set of electronics components is used. There are three classes of
boards:

e Data acquisition boards for interfacing to different detector types and external
high speed /O
e Calculation boards for calculating positions and pixel ID's
e Storage boards for doing event processing and communication
The communication between these boards happens via LVDS. For communication
with the data acquisition preprocessor computer and the timing system an optical link
is used.

All these boards form a network which essentially performs the following tasks:

e For each detected neutron event generate a event packet consisting of a four
byte pixel-ID and a four byte time stamp relative to the last pulse. The pixel-
ID is unique within the instrument.
e Generate additional events which indicate a pulse start
e Distribute timing information and DAQ commands to all participating boards
as required.
There are strong forces which make this event handling scheme mandatory. In order
to transfer the maximum amount of neutron events across communication links it is
advisable to minimize the amount of data to transfer per neutron event. The
combination of pixel-ID and a relative time stamp plus pulse events is this minimum.
A more complete event with an absolute time stamp and more detailed pixel
coordinates would be advantageous for downstream processing but is not feasible
performance wise.

The handover to the data acquisition software happens in the preprocessor computers.
These read the data from the electronics through the optical link and perform further
operations on the raw event data. There may be more then one preprocessor computer
in order to cope with high data rates.

Old Style Neutron Data Handling

This scheme uses the following steps:

1. The preprocessor computer stores the events data in a raw binary file after
preprocessing.
2. The raw file is transferred to another machine for further analysis
3. The next step is the generation of an event NeXus file from the raw event files
and meta data.
4. Then the event NeXus file is analyzed.
For a two hour experiment this process could take up to two hours until the user was
able to look at her data. Users are dissatisfied with this waiting period.

Second Generation Neutron Data Handling

In order to give users faster feedback on their data a new system was developed. This
system, ADARA, consists of the following components:

A Streaming Management Service (SMS)

A Streaming Translation Service

A Streaming Reduction Service

A histogram service

The heart of the new system is the Streaming Management Service (SMS). The SMS:

Collects neutron event data from the preprocessor computers

Collects auxiliary inputs from slow controls and the DAQ system
Packages all that information into a combined event data stream
Forwards the combined event data stream via TCP/IP to connected clients

One notable client to the SMS is the Streaming Translation Service. This service
receives the data from the SMS and writes it to an event NeXus file on a parallel file
system.

The Streaming Reduction Service is basically a copy of Mantid which reads the
combined event stream from the SMS and directly corrects and reduces the data.
Mantid is a component based data analysis framework developed jointly between ISIS
and SNS. Mantid has been heavily parallelized in order to enable it to process more
then 12 Million events/second. And there is still room for further improvements.

For providing immediate online feedback on data collection as histograms a
differently configured copy of Mantid is used which reads the event stream directly
from the SMS.

Event Mode Data Reduction

Before reducing neutron data to physical quantities some correction need to be
applied. Usually this is a combination of:

e Scaling to correct for detector efficiency differences and different monitor
counts

e Subtraction of background or empty can runs
Both are surprisingly easy solved in event mode:

e For scaling, a weight is applied to each neutron event.
e For subtraction the background event stream is added to the real data with
negative neutron events.

SNS Data Rates

In order to get a better estimate of the data rates to be expected at ESS it is good to
look on some numbers from the SNS

e SNS is now operating at around two thirds of its design power

e Most instrument actually produce neutron events in the order of 20-30 K
neutrons/second. This is not surprising: with a next generation neutron source
smaller samples are studied or more resolution is aimed for. Both experimental
conditions reduce the amount of scattering.

e Once the background is down it requires less disk space to store event mode
data rather then histogram data. This is especially true for very large detector
arrays and weak scattering. Then a histogram will contain many zeros and thus
be a sparse matrix.

e Only few SNS instruments generate high data rates. NOMAD is the strongest
producer with 640 MB/second.

e The total data rate for all SNS instruments averages out at 4GB/second.

e The current data production at SNS is 150TB/year. This is expected to rise to
300TB/year.

PyDAS and old slow control

The current SNS control system is based on Windows-XP computers, Labview and
python. There are separate computers for each controller which operate the actual
hardware via Labview. A central data acquisition computer maps all those device
computers in shared memory. The connection to the device computers happens via
national Instruments data sockets. On the central DAQ computer runs the PyDAS
software. PyDAS is the actual control program which controls motors, other devices
and the neutron DAQ. It runs scans and batch files and displays online data. PyDas is
a python application.

There are various problems with this setup:

e There are 12-15 Windows computer per beam line. Maintenance and system
updates are cost intensive.

e The solution promised to use commodity hardware. In practice it turned out
that some hardware cards only work with certain mother boards. Thus special
computers needed to be acquired anyway.

e The connection to the device computers via shared memory implements a
strong coupling between server and clients. This caused maintenance
problems.

e NI data sockets perform well most of the time. But sometimes they do not and
it is not clear what is causing the problem.

New EPICS Slow Control

Following an organizational reshuffling and and a review of the existing control
system, SNS decided to implement a new control system. This is currently being
prototyped at a neutron imaging beam line at HIFAR. The new setup will use EPICS
in order to communicate with devices. EPICS was decided upon because the SNS
accelerator division is already using EPICS and thus has the necessary expertise to
support the move. On top of EPICS there will be a SNS developed scan server which
actually performs the measurements. The SNS scan server maintains a queue of scans
to perform. Scans are broken down to primitives by top level code.

On top of the SNS scan server there will be an instrument specific graphical user
interface developed in Control System Studio (CSS), an EPICS UI generation tool.

As already said, the new system is currently being prototyped. Depending on the
success of the prototype the final setup may still change.

Data Acquisition at ISIS

The DAQ system at ISIS consists of the following components:

e A central instrument control computer running Windows 7, 64 bit
e Most hardware is accessed via Labview
e Neutron data acquisition is different: there is a C++ program which interfaces
with the detector electronics and is responsible for writing data files.
e There is a central control application, SECI, which is used to manage the
Labview components and the neutron data acquisition system.
ISIS performs experiments both in histogramming and event mode.

ISIS is currently undergoing a review of their data acquisition system. EPICS is
currently being actively evaluated as a new basis for the DAQ system. This is
currently in a prototype stage.

ISIS System Requirements
The ISIS DAQ system requires:

e Windows 7 64 bit

e Labview

e C++ for the neutron acquisition

e C# (C-Sharp) for the user interface
Interestingly, ISIS uses Windows 7 not on a plain computer but runs the DAQ server
in a virtual machine. There is one server class computer for running virtual machines
per instrument. The advantage is that virtual machine images can be easily backuped
or copied to other physical computers. Also, in the case of an upgrade or
modification, new software can be installed in a new virtual machine. Testing the new
software or returning to a known good state then just involves starting the appropriate
virtual machine.

ISIS Hardware Access

At ISIS the preferred way to physically access hardware is via TCP/IP. Controllers
which do not natively speak TCP/IP but other protocols such as RS-232, USB, GPIB
etc are accessed via TCP/IP bridges. Such remote I/O ports are mapped via
appropriate Windows drivers to local ports in such a way that the server software can
assume to work with hardware connected to the local machine. On the software side
Labview drivers and VI's (Virtual Instruments) are used to communicate with the
hardware. ISIS had to develop many Labview drivers themselves, even when vendor
supplied drivers existed. There are two reasons for this surprising fact:

« One reason is the low code quality in the vendor supplied drivers.

« The other reason is the different use case for a driver in an instrument control
system. In a normal Windows environment it is perfectly acceptable to put up
a dialog box when something needs to be configured or an error needs to be
acknowledged. In an instrument control system the desired behavior is to get
required information from external storage and to log errors somewhere and to
keep going if at all possible.

As a side note it is worth to note down ISIS experiences with using Labview. Labview
is very powerful. Recent versions of Labview contain enough features to write well
structured Labview programs: component structures, object oriented programming
facilities, message queues and controlled variables for multi threaded programs, event
handling and much more. Even fine grained control of user interfaces is possible. On
the other hand Labview is a very forgiving environment. Labview makes it easy to get
away with bad code which just barely works. Concluding this paragraph, part of the
bad reputation of Labview in the community is due to bad Labview programmers.
Labview is just a language which can do great things when used properly. But
reservations because of the commercial lock in are still valid.

Neutron Data Acquisition

In order to understand ISIS neutron data acquisition it is necessary to understand the
electronics. The current system is called DAE-2 with an upgrade to a more powerful
DAE-3 system being work in progress. ISIS uses a modular electronics system based
on VME cards. There are basically 3 types of cards:

e A communication card

e An environment card

e Detector cards
The communication card is responsible for the communication with the electronics. It
implements the configuration of the electronics and DAQ and downloading of data.
Currently this works via USB and is limited to 5Mb/second for DAE2. The newer
electronics, DAE3, has a 1GB ethernet link and work is in progress to upgrade the
DAES3 link to 10GB ethernet.

The environment card handles timing and veto signals. It receives the pulse signal
from the accelerator and maintains a frame (pulse) count. It also receives veto signals
from wherever this is necessary. The environment card propagates the pulse and veto
signals across the VME bus. At this point it is necessary to explain how time of flight
is handled at ISIS. At each neutron pulse a frame start event is sent with an absolute
time stamp. Neutron event time stamps are relative to this frame start event. Thus the
absolute time of flight value of a neutron events is calculated from:

Absolute neutron event time = Absolute frame start time stamp +
relative time stamp
The environment card supports various modes of dealing with pulses: it is possible to
have multi period frames (pulses left out), secondary pulse input (from a chopper) etc.

The real work of neutron event processing is done at the detector cards. As their input
detector cards connect to detector input cards (DIC). These cards are detector specific
and provide the position information for the neutron events. The actual time stamping
is done by the detector cards. The default mode of operation of the detector cards is
histogramming. To this purpose the detector card has 128MB worth of memory per
card. By using as many detector cards as necessary the electronics can scale to big
detector systems. If the need arises detector cards can be chained across different
VME crates via VME extenders. The detector cards use 16 bit for time stamps and
can handle time ranges from .5 to 162.5 nanoseconds. The maximum neutron rate per

detector module in histogramming mode is 16MHZ. The histogramming done by the
detector cards is configurable.

In event mode, the system works slightly different. Then raw neutron events are
stored together with a frame header in the histogram memory area. Event data is
continuously read out via the data link.

On the software side the DAE-2 electronics is handled by a C++ program. This
program

e Configures the detector system

e Starts and stops data acquisition

e Reads the neutron data from the electronics

e Writes NeXus data files
Meta data and log data to be stored in the NeXus file is retrieved from the instrument
manager SECI via DCOM. Instruments either write TOF-RAW or muon NeXus files.
The full NeXus instrument structure is not implemented. In event mode the
application writes NeXus event mode data files, compatible with those of the SNS.
Thus data can be reduced with the Mantid package.

Higher Level Functionality and User Interfaces

On top of Labview ISIS uses the instrument manager SECI. SECI is a graphical C#
application. The SECI user interface provides two main areas:

e A Dashboard area. This is an area where important instrument information is
displayed. There is a static dashboard part and a user configurable section
where users can choose to display labview variables.

e A second area where SECI acts more like a window manager and displays the
hierarchy of labview VI's. SECI can configure, start and stop the Labview VI's

Other features of SECI include:

e Users can select Labview variables for logging during the experiment. Logs
are stored in a SQLite data base

SECI also contains an error log view

Creates a read only dashboard WWW-page

Control of data acquisition

Limited facilities exist to display online data while the data is being collected
at the instrument

Scripting is possible from openGenie and python. Scripting is implemented by
accessing VI's in SECI via DCOM. A small interface layer exists which simplifies
DCOM access for scripting languages.

ISIS Control System Features
Configuration

XML configuration files which configure SECI for different instruments. There
is inheritance in configurations in order to allow for different configurations of a

given instrument.
Addressing

Addressing happens via Labview labels.
Simulation mode

Not really provided for. When scripting in openGenie the byte code compiler
provides some syntax checking
Logging

Done by SECI at various levels
Debugging

Labview has powerful debugging tools
Error propagation

Logged in SECI
Remote access

Only through remote desktop
Integration of sample environment and user hardware

Via Labview device drivers. Most sample environment comes with Labview
support.
Security

No restriction in the DAQ system. Windows access rules and common sense.
State Change Propagation

As SECI is the only program used not necessary. Scripts need to poll.
Parallel Processing

Labview can multithread. The neutron data acquisition runs in a separate

process.
Management Issues

A ctivity Time required

Teaching a user 10 min

Teach an instrument scientist 0.5 day

Teach device development 1 week

Induce new IT staff 3-6 months

Develop drivers From a few hours to weeks

ISIS currently operates 33 instruments with 7 staff of which 5 program. Of these 3 are
Labview programmers. External staff is employed occasionally mostly for writing
Labview drivers.

This system is used at ISIS only.

DAQ at Diamond and the GDA

Diamond uses a Java control system with the name GDA on top of EPICS for data
acquisition. EPICS has been described elsewhere in this document. Thus this section
will mainly focus onto the GDA.

The first interesting part however, is the distribution of labour between GDA and
EPICS. Diamond uses EPICS as a means of hardware device control. All upper level
functionality is implemented in the GDA. There is a small overlap in both directions
as some more advanced EPICS tools are used as well as that the GDA implements
some less important drivers directly.

The GDA itself consists of a Java server process and an Eclipse-RCP client
application.

GDA System Requirements

The GDA is written in Java and thus largely operating system independent. But
development focuses on the Linux and Windows platforms.

The GDA Server

The GDA server is a plain Java application, not an Eclipse-RCP application. It does
run the experiments, is responsible for data file writing and such. It includes a jython
scripting interpreter. The GDA server is configured via a XML configuration file
using the Spring framework. Spring is a dependency injection tool. Spring reads an
XML file. The XML file describes a framework of java objects which are then put
together by Spring to form an application. Usually there is only one GDA server per
instrument. If necessary, the GDA server can call out to additional external servers via
CORBA or RMI. Some features of the GDA server:

Role based access control

Baton system to control which client runs the instrument
Editable queue of scans to perform

Powerful scan system

GDA Clients and Communication with the GDA Server

The GDA client is an Eclipse-RCP application composed of plugins. The GDA client
contains a number of tabs which allow to view the status of the instrument, edit scans,
interact with the scripting interpreter and more. Thus the GDA client can be seen as a
pure parameter and experiment editor. Some instruments have instrument specific
tabs. The GDA client is configured via Spring XML files and property files. The
GDA client also contains a NeXus file viewer.

Communication with the GDA server happens via CORBA or RMI. The GDA server
only passes state changes up to the GDA client, no values. Thus the GDA server
informs the client when for example a motor starts or stops but not about the position
of the motor. For values, the client has to use EPICS channel access. Thus, the GDA
uses three network protocols: Java RMI, CORBA and EPICS channel access.

GDA Features

Configuration

XML configuration files for the Spring framework
Addressing

Names are defined in XML files. There is a finder service which allows to
locate devices.
Simulation mode

Simulation mode in a separate GDA server
Logging
Logging configurable at object level in the GDA server
Debugging
See logging. Many instruments have special jython scripts which test the health

of the instrument.
Error propagation

EPICS errors and other errors are passed through the system as exceptions.
Remote access

Via NX client
Integration of sample environment and user hardware

Via EPICS drivers. There is also the possibility to write drivers in Java or access
devices via jython scripts.
Security

Role based access control, baton system and cooperation of users
State Change Propagation

Through CORBA and EPICS CA
Testing

High coverage with unit tests
Parallel Processing

By using EPICS for hardware access, there is already some parellisation. The
GDA server can call out to external services when necessary. Control is
maintained via state variables.

Management Issues

A ctivity Time required
Teaching a user 30 min

Teach an instrument scientist No data
Teach device development see EPICS
Induce new IT staff 3-6 months

Develop drivers

From a few hours to weeks

Diamond currently operates 31 beam lines with 12 EPICS control engineers and 12
staff looking after GDA. In addition there are 8 people doing data analysis software.
Building the GDA client application is so complex that a special build, test and

release engineer is required.

GDA is designed to be developed collaboratively. However, as of now it is only used

at Diamond.

IROHA

IROHA is the summarizing name of the DAQ middle ware at KEK/JPARC in Japan.
IROHA is a distributed control system based on a component model. The DAQ
component model was based on a standard robotics component model called Robotics
Technology middleware. This standard is discussed and defined by the Object
Management Group (OMG). A RT-component offers typed input and output data
streams and service interfaces for controlling and interacting with the component. A
RT-component also contains a state machine. RT-components can be interconnected
with each other in data flow networks. For the purpose of DAQ, JPARC/KEK has
extended this component model slightly.

Initially CORBA was used for inter component communication. This has been
replaced by XML messages across HTTP. This is a RPC style communication.

System Requirements
IROHA runs on Linux.

Hardware Access

Hardware is accessed through RT-middleware components.

Neutron Data Acquisition

At the electronics side neutron data acquisition is handled by NEUNET VME bus
cards. The NEUNET cards handle both histogram and event mode data collection.
The NEUNET cards run a special network protocol SiTCP on top of standard ethernet
hardware. These NEUNET cards forward the collected neutron events to a DAQ unit.
On this DAQ unit four other components process the neutron event data:

e A gatherer component reads the neutron events and forwards them to the
dispatcher
e The dispatcher forwards the neutron event stream to the logger and the
monitor
e The logger saves the event stream to disk into NeXus files
e The monitor component histograms the event data for online display
64 bits of data are transferred by neutron event: 24 bits TOF-time, 8 bits PSD number,
12 bits right and left pulse height. In addition there are pulse time events.
Reconstruction of absolute time happens by keeping track of TO frames which are
sent whenever a neutron pulse is generated.

Data analysis of event data happens through manyo-lib programs.

Implementation of Higher Level Functionality

Higher level functionality can be implemented either as RT-middleware components
in C++ or through scripting in python.

User Interfaces

Instruments have instrument specific graphical user interfaces. In terms of common
user interfaces there is a launcher, a sequencer for data analysis, an experiment
scheduler for batch processing and scripting, a status monitor and instrument status
windows.

The experiment scheduler provides for scripting in python.

Control System Features
Configuration

Via XML files. JPARC/KEK is moving towards storing the configuration in a
XML database.
Addressing

You need to know the URL's of RT-middleware components
Simulation mode

None
Logging

To XML files at component level
Debugging

Some components have debug modes. There is also a test bed to test the system
offline
Error propagation

By polling RT-middleware components from the DAQ operator console
Remote access

No remote access foreseen as of now. Remote access via VPN is in
consideration.
Integration of sample environment and user hardware

For sample environment devices RT-middleware components are provided.
Special support for supporting user hardware does not exist yet.
Security

Security is achieved through network security: each instrument lives in its own
VLAN, separated by firewalls.
State Change Propagation

By polling RT-middleware components from the DAQ operator.
Parallel Processing

Components run independently. For neutron data acquisition many pipelines
may run in parallel.

Management Issues

A ctivity Time required
Teaching a user 2-3h

Teach an instrument scientist 1 months
Teach device development 12 months
Induce new IT staff 12 months
Develop drivers 3 months

KEK/JPARC does not have a data acquisition computing group in its own right. DAQ
software and hardware are developed between the electronics group and scientists.

General Experiences

During the survey for this control system comparison questions for more general
experiences and what people would do different given a second chance were asked.
This section contains a selection of answers.

Technical Experiences

In general the control systems surveyed were themselves the result of an
evolution. During this evolution many initial design weaknesses were fixed.
Make sure to have a command line interface

Several people like to move away from CORBA. Reasons include:

o Inefficient

o Difficult to maintain

o Complicated

The client server architecture has proven its value

Use a system which allows to easily modify GUI's

Hardware standardization is a good thing

It is a good idea to make parts of the system replaceable. This allows to fix
wrong technical choices or adapt to newer technologies. This requires to
abstract a number of certain services in the system to allow for the possibility
of different implementations.

Python is the preferred scripting language.

Network protocols used in DAQ need to cover two requirements:

o Write/Read RPC style interactions

o Notification messages about state changes

Organizational Experiences

The organization needs to avoid blame games: the user blames the software,
the software engineer the electronics etc. This does not solve problems.

Take care of data formats and management and other standards right from the
start. It is difficult to resolve a mess once it has occurred.

Having a common sequencer on top of a distributed system helps. Otherwise
there is the need to maintain user scripts in many different languages/formats
at the instruments. A shared sequencer can also take care to write coherent
data files with all necessary information. And it also provides a coherent user
experience across instruments.

It is important to have a good and cooperative work environment

A uniform system is important, almost independent of the actual choice.
Integration and interfaces must be enforced

Being part of a collaboration can also have its downsides: the need to will
arise to maintain code which has been written at different places with different
code styles. Or which may be hard to understand for other reasons.

Common Patterns

During this survey some patterns shared among control system could be identified.
These are listed in this section. Some of them seem trivial. But it is nevertheless worth

to make a note of them.
State variables for controlling asynchronous operations

When doing operations asynchronously, the client side is interested to figure out
if the requested change is still in progress or has already finished. To this
purpose, state variables are used which go through a sequence of idle, running,
idle when processing. A separate variable holds the success or error of the
operation.

Target/value separation for hardware variables

For hardware variables where a requested change must not necessarily be
obeyed there are often a pair of variables: a target and a value. The value is the
actual value as read back from the device, the target is the one requested. This is
also helps to separate thread access: the target is only set by the client, the value
is set only by the device server.

Layering of hardware access

In hardware access there is often a layering: a bus layer, a driver framework and
then the actual driver. The aim is that the actual driver only needs to concern
itself with formatting the necessary commands for the device and parsing replies
from the device and the devices very own logic (or unlogic) and not so much
with infrastructure.

Abstraction of system services

Some systems provide an abstraction on top of system services such as threads,
network protocols, memory etc. The rationale is to change only the library and
not valuable domain code when the underlying technology changes.

Higher level functionality implemented on top of intermediate language

Some systems choose to decompose higher level constructs such as scans into a
set of primitive commands to be executed as a block by an executor. The
advantage is the reuse of the executor. The other advantage is that different
execution modes, such as simulation modes can easily be implemented by
changing the executor.

Data Acquisition System Feature Comparison

A comparison of the features in the various DAQ system can be seen in the table below:

Feature Tango Sardana NOMAD EPICS GDA SNS ISIS KEK/JPARC
Architecture DC SCon DC SC DC SConDC SC SC DC
Preferred OS Linux Linux Linux Linux None Windows Windows Linux
Required SW CORBA CORBA CORBA None Java Labview Labview None

HW access DS DS, direct direct DS DS, direct Labview Labview RT-componen
NW- Protocoll CORBA CORBA CORBA CA CA, CORBA Labview-DS DCOM HTTP/XML
Scripting Many Python MAD Many Jython Python Python, OG Python
Standard GUI Many taurusgui NOMAD Many GDA SECI Many
Neutron DAQ No No HM No No Stream HM, stream HM, stream
Configuration Tango-DB Tango-DB XML Distributed XML XML XML
Addressing Path Path Names CA-PV CA-PV, nameNames Names URL
Simulation None Yes Yes None Yes None None None
Logging Various Various XML Various Various Local Local XML
Propagation 0MQ oMQ CORBA not CA CA,CORBA Labview Labview Polling
Remote VNC VNC VNC VNC VNC VNC VNC None
Parallel Yes Yes Threads Yes Yes Limited Threads Yes
Support 8F 2F ILL Many F Diamond 1F 1F 1F

User intro 2-3h 2-3h 5h 05h 30 min N/A 30 min 2-3h
Instrument SC 1 months 1 months 5 day 1 day N/A N/A day 1 months
Device dev 3 days 3 days 1 week 6-12 month 6-12 months N/A 1 week 12 months
IT staff 6 months 6 months 1-2 month 3-6 month 3-6 months N/A 3-6 month 12 months
Driver dev Days — weeks Days — weeks days days to monthh to weeks N/A hours to weeks3 months

Legend: DC: Distributed Control System, SC: single kernel control system, DS: device server, CA: channel access, HM: histogramming,
OMQ: ZeroMQ, F: facilities,

Actual Manpower Used for DAQ

This little table compares the number of DAQ staff with the number of instruments
supported.

Facility DAQ-System |DAQ-staff |No Instruments |(Staff/Instrument
ESRF TANGO 17 42 0.4

ILL NOMAD 6 40 0.15

SLS EPICS 10 20 0.5

ISIS ISIS 7 33 0.21

DIAMOND |[EPICS/GDA |24 31 0.77

Please take these numbers with care: in some cases they represent what the respective
organizations are willing to provide and not what really is needed.

Acknowledgments

I am deeply indebted to all those people to whom I have talked at the various facilities
for advice and information which became the input for this comparison. Most notably
(in no particular order):

Andy Goétz, ESRF

Paolo Mutti, ILL

Steven Hartmann, SNS
Freddie Akeroyd, ISIS
Takeshi Nakatani, MLF
Paul Gibbons, DIAMOND
Dirk Zimoch, SLS

Glossary of Computing Terms
IPC

Inter process communication. Consider two or more cooperating process which
have the need to exchange data with each other. This data exchange happens via
IPC mechanisms.

RPC

Remote procedure calls. This is an IPC mechanism where functions in processes
on different computers are called through the network.
CORBA

COmmon Request Broker Architecture. This is another IPC mechanism for data
exchange between programs running on different computers. CORBA uses an
object oriented approach: programs send messages to remote objects. CORBA

provides services which allows to locate remote objects and for transporting
CORBA calls. There are also code generators which generate skeleton server
and client code from a description of the remote objects in IDL, Interface
Definition Language.

ZeroMQ

This is another IPC mechanism where programs send each other messages
which are stored in message queues. Participating programs then can inspect
message queues for messages at their leisure and process them. Very flexible
messaging schemes can be implemented with such queuing systems of which
ZeroMQ is one implementation of.

DCOM
DCOM is a distributed component model developed by Microsoft. It is another
IPC mechanism used mainly on Windows.

RMI

Remote Method Invocation. This is another IPC mechanism which is special to
the Java programming language.
RTOS

Real time operating system. Normal operating systems such as Windows or
Linux cannot guarantee that certain requests, especially HW requests, are
processed within well defined time limits. Real time operating systems are
optimized to do right that: guarantee processing within well defined time limits.
LVDS
Low Voltage Differential Signaling is a standard for high speed data transfer
between electronics components.
vxWorks

vxWorks is a commercial real time operation system developed by the company
Windrivers.
VME

VME is a popular bus system used to build custom computer systems for data
acquisition. There exists crates (boxes) which have a back plane with the VME
bus system. Computer and I/O and other cards can be plugged into this back
plane to form a specialized computer system. The VME bus then takes care of
data exchange between the different cards.

Distributed Control System (DCS)

A data acquisition system where the tasks of accessing hardware, calculation
and other data acquisition services are distributed among different processes
running on different computers. DCS excel when the number of hardware
devices which need to be controlled becomes very large or when the system has
to extend over large distances.

XML

XML is a structured ASCII file format. It is easy to process by computers and
reasonably understandable by knowledgeable humans.
Remote Desktop, VNC, NX

Remote desktop systems are system which allow to control distant computers.

The whole desktop of the remote computer is transferred across a network link.
VNC and NX are two popular implementations of remote desktop technology.
Motif

A toolkit for building graphical user interfaces. Motif is fairly old and is tied to
the X-windows system normally installed on unix computers.

QT

QT is another toolkit for building graphical user interfaces. QT is a cross
platform toolkit, i.e. code developed for one platform can be compiled for
Windows, Macintosh and Linux systems.

SWT
SWT is a Java user interface development toolkit.

Eclipse-RCP

Means Eclipse Rich Client Platform. Eclipse is a development environment for
programming in Java, C++ and many other programming languages. Eclipse
itself uses a programming model where an application is built from a bundle of
plugins. Each plugin contributes certain services or implements some
functionality. The idea is that plugins can be reused between different
applications. The infrastructure for making the plugin mechanism work is
known as Eclipse-RCP and can be used to implement any type of application.
Eclipse-RCP is bound to the Java programming language.

	Introduction
	TANGO
	TANGO System Requirements
	TANGO Hardware Access
	Neutron Data Acquisition
	Implementation of Higher Level Functionality
	User Interfaces
	Control System Features
	Management Issues

	NOMAD
	System Requirements
	Hardware Access
	Neutron Data Acquisition
	Implementation of Higher Level Functionality
	User Interfaces
	Control System Features
	Management Issues

	EPICS
	Overview
	Layer 1: Clients
	Layer 2: A Network protocol: Channel Access
	Layer 3: Servers

	System Requirements
	Hardware Access
	Neutron Data Acquisition
	Implementation of Higher Level Functionality
	User Interfaces
	Control System Features
	Management Issues

	EPICS-4
	Data Acquisition at SNS
	Neutron Data Acquisition
	Old Style Neutron Data Handling
	Second Generation Neutron Data Handling
	Event Mode Data Reduction
	SNS Data Rates
	PyDAS and old slow control
	New EPICS Slow Control

	Data Acquisition at ISIS
	ISIS System Requirements
	ISIS Hardware Access
	Neutron Data Acquisition
	Higher Level Functionality and User Interfaces
	ISIS Control System Features
	Management Issues
	DAQ at Diamond and the GDA
	GDA System Requirements
	The GDA Server
	GDA Clients and Communication with the GDA Server
	GDA Features
	Management Issues

	IROHA
	System Requirements
	Hardware Access
	Neutron Data Acquisition
	Implementation of Higher Level Functionality
	User Interfaces
	Control System Features
	Management Issues

	General Experiences
	Technical Experiences
	Organizational Experiences

	Common Patterns
	Data Acquisition System Feature Comparison
	A comparison of the features in the various DAQ system can be seen in the table below:
	Legend: DC: Distributed Control System, SC: single kernel control system, DS: device server, CA: channel access, HM: histogramming, 0MQ: ZeroMQ, F: facilities,
	Actual Manpower Used for DAQ
	This little table compares the number of DAQ staff with the number of instruments supported.
	Acknowledgments
	Glossary of Computing Terms

