
WIR SCHAFFEN WISSEN – HEUTE FÜR
MORGEN

Control Systems Survey for ESS

Mark Könnecke, Owen Arnold

• European Spallation Source (ESS) being built in Lund,

Sweden

• Switzerland contributes with money and work, In Kind

− Survey of existing experiment control systems

• Aims

−Choose an experiment control program (ECP) for ESS

−Gather knowledge about control systems

• Participants in the survey:

−EPICS (3,4), TANGO, GDA, Sardana, NOMAD, IROHA, NICOS-2,

SECI, IBEX, SNS, pshell, NSLS-2(bluesky)

The Context

 2

• A questionnaire was constructed covering an

exhaustive list of aspects of control systems

• The questionnaires were filled in, discussed and

validated with either the original authors of the

software or experts in it

• The questionnaires can be obtained on request

Survey Method

 3

• EPICS, TANGO discussed as a separate class

• Common Patterns

•What was learned?

• Details on selected systems

• The Selection of an ECP for ESS

Results

 4

• Distributed Hardware Abstraction Layer (DHAL)

−Little servers implement hardware access and functionality

−Multiple clients can access servers through a standard network

protocol and standardized interfaces

• Large: collaborations, installations, many support tools

• No free lunch:

− increase complexity

− new sources of bugs

• BUT: Everyone is using one of them, Exceptions: (NOMAD, IROHA)

• MIA: Collect bits and pieces and present as an instrument to the

user

EPICS, TANGO

 5

• EPICS and TANGO are targeted towards accelerators

• Accelerators

− Very static configurations

− Trained operators

− Standard operating procedures

• Instruments

− Dynamic and changing configurations

− Untrained users

− Complex operations

• EPICS/TANGO work 90% for instruments too, the difficulties come in the last

mile

• Example CSS or MEDM:

− For accelerator displays: beautiful

− For instruments: change code for every change at the instrument?

Subtle Mismatch EPICS/TANGO Tools for Instruments

 6

• EPICS 3

− Best at home on register hardware (VME, …)

− Core developers greying

− Not really good at transporting arrays

− Steep learning curve: 18 months

• EPICS 4

− Proper support for arrays and structures

− MIA: device support

• TANGO: critical dependency: CORBA

− More approachable: 3 days advertised

• Is there a market for a new system based on modern messaging

concepts?

EPICS/Tango Future

 7

• Most systems have a notion of a device

− Bunch of parameters (also an abstraction)

− Often in hierarchical arrangements

− Device classes:

− Readable

− Movable, Scannable,

− Motors are treated special

− Represent not only hardware but meta data etc. too

Common Patterns: Device, Parameter Abstractions

 8

• There is a cost: Level of indirection

• Benefits:

− Abstracts from hardware

− Helps implement persistence

− Helps implement change notifications

− Helps implementing history

− Caching

− Fine grained access control

− Simulation mode

Device, Parameters: Why?

 9

• DataSet

− Collection of meta data and detector data for a

measurement or scan point

• DataSink

− takes a DataSet and does something with it

• Common somethings:

− Data file writing

− Live display

− Online data reduction

− Whatever you want to do with the data…

Common Pattern: DataSet, DataSink

 10

• Containers for devices and experiment routines

• Run experiment routines (scan etc)

− against: Devices, backed by EPICS or TANGO

− creating DataSets

− forwarded to DataSink

General ECP Pattern

 11

• Scanning

• Scripting and Batch Processing

• Various forms of waiting/running:

−wait for something to finish

−wait for a list of things to finish

−start without waiting

• Access control, three levels:

− RO

− User

− Specialist

• Data file writing (high entropy)

• Virtual or logical motors

• Managing configuration

Common Features

 12

• XML for configuration files

• Python for scripting and implementation

• Eclipse-RCP based UIs

• Client-Server architectures

−Instrument server(s)

−UI interacts with instrument server

• Linux as OS

Common Technical Choices

 13

• Command Line Interfaces

• Log viewers

• 1D or 2D online data displays with interaction

• Hierarchical parameter displays

• Device lists

• Dashboards

• NEW:

− instrument schematics with possibility to drill down

− 3D instrument views

• Clutter is a problem in all instrument UI’s

− Let us ask for visibility controls

Common UI Elements

 14

• Direct bi-directional communication, command-

response

− write parameters

− read parameters

• RPC-mechanisms, like CORBA are an extension of

command-response

• Publish-subscribe

Common Network Patterns

 15

• Control systems are results of evolution

• Hardware standardization is a good thing

• Take care of data format and other standards right away

• Independent of the technical choice, having a uniform

system is important

• Design for change

• Do not neglect the CLI

• Allow for easy modification of GUIs

• Avoid blame games

• Collaboration can have its downsides

General Control System Lessons

 16

• SECI:

− LabView has all the features to write proper software

− But makes it very easy to write bad software

− ISIS had to reimplement 50% of all Labview drivers

• SNS

− NI-Datasockets irregularly failing

− Commodity PC were not so commodity after all: cards

had to match PC

• Syntax addiction

Selected Lessons: Labview

 17

• In Europe, when you do a TAS, you are supposed to

implement MAD syntax

• NOMAD had to implement MAD syntax

• Nearly all newer synchrotron systems had to

implement SPEC syntax

• ISIS had to try to be openGenie compatible

• ==> Scientists are syntax addicted!!

Syntax Addiction

 18

• GDA: baton system for controlling access

• NOMAD: Block programming for batch file generation

• PSHELL: git for managing configuration files and

scripts, a git commit per script run

• NSLS-2

− Use of functional programming constructs in bluesky

− Data handling

− The Flyer abstraction

− More details: Maksim Raitkin’s presentation

Selection of Ideas Implemented

 19

• The accelerator people had already settled for EPICS;

we had to follow

• C-Python was to be the preferred scripting language,

because of numpy and better package support.

− This deselected all the Java based systems having jython

as scripting language

• This left four candidates: NICOS, Sardana, NSLS-2,

IBEX

Choosing an ECP for ESS

 20

Decision Matrix

 21

Criterion IBEX NICOS Bluesky	 Sardana
Weight Answer PointsWeighted Answer PointsWeighted Answer PointsWeightedAnswer PointsWeighted

Does	support	for	EPICS	devices 2 yes 1 2 not	fully	yet 0.5 1 yes 1 2 partly 0.5 1

Uses	Python	-	ManEd	integraEon 1 scripEng	test 0.5 0.5 yes python 1 python 1 1 python 1 1

Uses	Qt	-	ManEd	integraEon 0.8 no 0 0 no 0 0 no 0 0 no 0 0

Uses	scienEfic	ploIng	lib 1 not	really 0 0 matplotlib 1 1 matplotlib 1 1 matplotlib 1 1

Easy	to	configure	GUI	/	creaEng	mulEple	experiment	views 0.8 yes 1 0.8 parEal 0.5 0.4 no 0 0 taurus 1 0.8

Easy	to	create	a	SynopEc	view	Support	for	"instrument	configuraEons"0.5 yes 1 0.5 parEal 0.2 0.1 no 0 0 no 0 0

Already	used	at	other	sources	(prior	to	adopEon)	 2 no 0 0 no 0 0 no 0 0 yes 1 2

Size	of	development	community	/	current	development	work 2 ISIS	only 0 0 FRM2	only 0 0 NSLS-2 0 0 many 1 2

Learning	Eme	as	developer 0.8 steep 0.5 0.4 moderate 0.5 0.4 moderate 0.5 0.4 some 1 0.8

Sum	over	dependencies	*	number	of	acEve	authors	over	last	6	months	for	each2 new 1 2 moderate 0.5 1 new 1 2 CORBA 0 0

Project	is	NOT	vunerable	to	forked	dependencies 2 old	CSS 0.5 1 no 1 2 no 1 2 no 1 2

Uses	technologies	or	knowledge	already	available	at	DMSC 2 yes 1 2 yes 1 2 yes 1 2 half/corba	 0.5 1

IntegraEon	/	synergy	with	other	ESS	ICS	technologies/products/services0.5 yes 1 0.5 not	fully 0.5 0.25 yes 1 0.5 no 0 0

MulE	pla_orm	client 2 yes 1 2 some	hassle 0.5 1 no 0 0 some	hassle 0.5 1

Mainly	runs	on	Linux 1 no 0.5 0.5 yes 1 1 yes 1 1 yes 1 1

Security	/	authenEcaEon	/	authorisaEon	model 1 no 0 0 yes 1 1 no 0 0 yes 1 1

Support	for	scanning	CLI.	Scan	everything	against	everything. 2 in	deve 0 0 yes 1 2 yes 1 2 yes 1 2

Web	Interface 1 dashboard 0.2 0.2 mini 0.2 0.2 no 0 0 no 0 0

ProgrammaEc	Interface 2 at	EPICSS 0.5 1 pythonic 1 2 for	data 0.5 1 tango 1 2

Dry	Run	Mode 1genie	python 0.5 0.5 built	in 1 no 0 0 no 0 0

Provides	a	Logging	service 1 MySQL 1 1 yes 1 1 python	log 1 1 yes 1 1

Provides	Error	handling 1 distributed 0.3 0.3 yes 1 1 yes 1 1 yes 1 1

Ease	of	IntegraEon	with	data	streaming	project 1with	difficulty 0.3 0.3 add	device 1 1 add	device 1 1 new	dev	type 0.5 0.5

Quick	fixes	in	producEon	by	team 1 partly 0.5 0.5 yes 1 1 yes 1 1 more	difficult 0.5 0.5

Codacy	project	grade.	For	points	A	=	1,	F	=	0 2 0
Total 33.4 12.3 16 15.4 20.35 15 18.9 15.5 21.6

• Candidates are close together

• IBEX: lowest score, no central instrument server

• NSLS-2: no server functionality

• Sardana: critical dependency CORBA

• The winner is: NICOS

ESS Decision

 22

• There are patterns:

− Use of a DHAL

− Experiment routines act upon devices creating datasets

being forwarded to DataSinks

• On comparison, successful systems are very close

together in features and capabilities

Conclusions

 23

• EPICS Support

• Support for non EPICS devices

• # community provided drivers

• Driver development time

• Ease of GUI configuration

• Support for synoptic view

• Support for "instrument configurations“

• GUI technology "looks nice", or is easy to make so

• Already used at other neutron sources / shared user base

• Size of development community / current development work / opportunities for

collaboration

• Learning time

• Integration with Streaming

Selection Criteria

 24

• Community size

• Use at other n-facilities

• Dependencies/Longevity

• Use of technology already available at ESS

• Multi platform client

• Security model

• Scan support

• Scripting support

• Remote WWW-interface

• Simulation support

• Logging/Error reporting integration

• Ease of analysis -DAQ integration

Selection Criteria 2

 25

